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ABSTRACT 
 

Programmable nucleases are powerful genomic tools for precise genome 
editing. These tools precisely recognize, remove, or change DNA at a defined 
site, thereby stimulating cellular DNA repair pathways that can cause 
mutations or accurate replacement or deletion/insertion of a sequence. The 
CRISPR-Cas9 system is the most potent and useful genome editing technique 
adapted from the immune system of certain bacteria and archaea against 
viruses and phages. In the past decade, this technology has made notable 
progress, and at present, it has largely been used in genome manipulation to 
make precise gene editing in plants, animals, and human cells. In this review, 
we aimed to explain the basic principles, mechanisms of action, and 
applications of this system in different areas of medicine, with an  
emphasize on the detection and treatment of parasitic diseases.  
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    Keywords: CRISPR-Cas system, Genome editing, Medicine, Parasitology 
 

Corresponding Author:   
Morteza Karimipoor 
2Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran; mortezakarimi@pasteur.ac.ir, 
mortezakarimi@yahoo.com 
 

Parviz Parvizi 
Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran; parpparvizi@yahoo.com 

 

 [
 D

O
I:

 1
0.

61
18

6/
ib

j.3
89

8 
] 

 [
 D

O
R

: 2
0.

10
01

.1
.1

02
88

52
.2

02
3.

27
.5

.1
.7

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ib

j.p
as

te
ur

.a
c.

ir
 o

n 
20

24
-1

1-
22

 ]
 

                             1 / 28

http://dx.doi.org/10.61186/ibj.27.5.307
mailto:mortezakarimi@pasteur.ac.ir
mailto:mortezakarimi@yahoo.com
mailto:parpparvizi@yahoo.com
http://dx.doi.org/10.61186/ibj.3898
https://dorl.net/dor/20.1001.1.1028852.2023.27.5.1.7
http://ibj.pasteur.ac.ir/article-1-3898-en.html


Biomedical Applications of CRISPR-Cas9 Technology  Ebrahimi et al. 

 

 
220 Iran. Biomed. J. 27 (5): 219-246 

 

INTRODUCTION 

 

enome editing technology is a powerful tool for 

manipulating the genome, which allows 

scientists make highly specific changes in the 

DNA sequence of living organisms, including plants, 

bacteria, and animals. Gene editing is performed using 

programmable nucleases to target a specific DNA 

sequence, in which DNA is inserted, removed, or 

modified[1-3]. Genome editing nucleases induce targeted 

DSBs. DSBs are subsequently repaired by cellular 

mechanisms via NHEJ in the absence of a donor 

template or HDR in the presence of a donor template. 

HDR can be used for gene integration or base correction, 

while NHEJ is used to create Indels, which causes 

disruption of the target gene[4] (Fig. 1). Gene editing 

technology has been emerged in the 1990s, and three 

site-specific genome editing tools, namely ZFN, 

TALEN, and CRISPR-Cas9, each with its pros and 

cons, have widely been used (Table 1). The inspiration 

of the natural zinc fingers leads to the development of 

the first genome editing tool, ZFN, which is a fusion of 

a customizable DNA-binding protein and Fok I 

endonuclease to create DSB[5-7]. The discovery of 

transcription activator-like effectors in late 2009 

resulted in the consideration of the TALEN as an 

alternative platform to ZFNs as engineering 

programmable DNA-binding proteins. TALEN is also 

comprised of DNA-binding and Fok I cleavage 

domains. In comparison with the ZFN, TALEN benefits 

from two important advantages: first, lower toxicity and 

higher specificity, and second, the simpler design[8,9]. 

Genome editing technology has taken a leap forward 

since the discovery of CRISPR-Cas in 1987[10,11]. 

In comparison with ZFNs and TALENs, CRISPR/ 

Cas9 is not only a versatile, robust, and highly precise 

genome editing tool, but also is very quick, inexpensive, 

and extremely simple to use. Unlike ZFN and TALEN 

that recruit proteins to recognize the targeted sequences 

in the genomic regions, the CRISPR/Cas system uses a 

crRNA to recognize the targeted genomic sequence and 

acts as a scaffold for recruiting the Cas endonuclease to 

introduce site-specific DSBs[12]. This review provides 

background knowledge on the history and mechanism 

of CRISPR/Cas systems, the classification of CRISPR-

Cas systems, and the application of CRISPR as a 

genome editing tool. The application of CRISPR 

systems has been discussed for treatment and  

diagnosis, with more focus on infectious diseases and 

parasites.  

 

 

 
 

Fig. 1. CRISPR/Cas9-mediated DSB repair mechanism. The Cas9 introduces a DSB in the target DNA. DNA repairing includes the 

NHEJ and HDR pathways. The NHEJ pathway leads to Indel. The HDR pathway uses homologous donor DNA sequences to create 

precise insertion between DSB sites. 
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   Table 1. Comparison of the features of three gene editing techniques[13-15]. 

Genome editing tool ZFN TALEN CRISPR-Cas9 

Component 
ZFP + FokI 

Fusion protein 

TALE + FokI 

Fusion protein 

gRNA + Cas9 

Protein 
    

Nuclease FokI FokI Cas9 

DNA-binding domain Protein Protein RNA 

Target site size 9-18 bp 30-40 bp 22 bp + PAM sequence 

Design availability More complex Complex Very simple 

Ease of multiplexing Low Low High 

Time 7-10 days 5-7 days 1-3 days 

Cost High High Low 

Ex vivo delivery Easy Easy Easy 

Efficiency Variable High High 

Methylation sensitivity High High Low 

 

 
 

CRISPR/Cas9 System 

A brief history of the CRISPR/Cas9 system 

CRISPR/Cas systems are repeating DNA sequences in 

bacteria and archaea and act as adaptive immune 

response systems that protect the mentioned organisms 

against invading viruses, such as bacteriophages and 

plasmids. In 1987, CRISPR systems were first 

discovered in the Escherichia coli genome by a Japanese 

scientist, Yoshizumi Ishino. This system comprises a set 

of 29 nucleotide repeats interspaced by five intervening 

32-nucleotide non-repetitive sequences in the 

Escherichia coli genome[16]. In 1993, CRISPR clustered 

repeats were discovered in Mycobacterium tuberculosis 

by van Embden[17] and his team who identified different 

spacer sequences between the DNA repeats. This 

clustered array was highly conserved across multiple 

evolutionary distinct bacterial genomes, and the locus 

was named CRISPR by Francisco Mojica, a 

microbiologist at the University of Alicante in Spain, in 

2002[18]. In 2010, the CRISPR/Cas system of 

Streptococcus thermophilus was shown to introduce 

DSBs at a precise position in the target DNA[19]. In 

2011, Deltcheva and colleagues[20] reported that 

tracrRNA, CRISPR-Cas9, and RNase III are essential 

for maturation of crRNAs in Streptococcus pyogenes. 

One year later, in 2012, it was discovered that the 

CRISPR system of Streptococcus pyogenes serves as a 

genome editing tool by showing that the Cas9 can be 

guided by tracrRNA, crRNA, and a synthetic sgRNA to 

cleave target DNA in vitro[10,21]. Since then, the 

CRISPR/Cas9 technology has been applied for targeted 

and precise manipulations of DNA in various cell types 

and organisms[22-26]. 

 

Components of CRISPR/Cas9 system 

According to the structure and function of the effector 

complex (Cas proteins), the CRISPR/Cas system is 

classified into two main classes with six types. Class I 

comprises types I, III, and IV. Class II system comprises 

types II, V and VI. The first and most common type used 

in genome editing is the type II CRISPR/Cas9 system, 

which includes three main components: Cas9 protein, 

crRNA, and tracrRNA. The effector protein of class I 

consists of a multiprotein complex, while the class II 

system utilizes the Cas9 protein, which is a single, large, 

and multidomain Cas protein[27,28]. As an RNA-guided 

endonuclease, SpCas9 has been adapted for targeted 

genome editing in a variety of organisms. Cas9 contains 

two parts: a recognition domain, which is responsible 

for binding gRNA to target nucleic acid, and a NUC 

domain, which includes HNH, RuvC lobes, and PAM-

interacting domains. In the NUC, the RuvC-like 

nuclease cleaves the non-complementary (non-target) 

DNA strand, and the HNH cleaves complementary 

(target) DNA strand. The PAM-interacting domain is 

responsible for identifying the PAM sequence and 

binding to the non-complementary strand of the target 

DNA[29-31]. 

 

Mechanisms of CRISPR/Cas9-based genome editing   
The critical part of the CRISPR/Cas9 tool is sgRNA, 

which is a combination of crRNA and tracrRNA. The 

crRNA is a 20-bp sequence complementary to the target 

DNA site (also called protospacer), located at the 5′ end 

of sgRNA, and tracrRNA serves as a binding scaffold 

for the Cas9 endonuclease. Easily programmable 

sgRNA can effectively recognize specific sequences 

and guide the Cas9 endonuclease to the target site by 

simple Watson–Crick base pairing and makes DSBs 3 

or 4-bp upstream of the PAM sequence at a target 

site[10]. The specific binding of CRISPR/cas9, besides 

the 20 bp complementarity sequence of gRNA, requires 

 [
 D

O
I:

 1
0.

61
18

6/
ib

j.3
89

8 
] 

 [
 D

O
R

: 2
0.

10
01

.1
.1

02
88

52
.2

02
3.

27
.5

.1
.7

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ib

j.p
as

te
ur

.a
c.

ir
 o

n 
20

24
-1

1-
22

 ]
 

                             3 / 28

http://dx.doi.org/10.61186/ibj.3898
https://dorl.net/dor/20.1001.1.1028852.2023.27.5.1.7
http://ibj.pasteur.ac.ir/article-1-3898-en.html


Biomedical Applications of CRISPR-Cas9 Technology  Ebrahimi et al. 

 

 
222 Iran. Biomed. J. 27 (5): 219-246 

 

a PAM sequence, i.e. a short and conserved sequence of 

2-5 bp length located next to the target site. The PAM 

sequence and its size depend on the bacterial species. 

The PAM sequence for Streptococcus pyogenes Cas9 is 

5ʹ-NGG-3ʹ[21-27,32-35], for Streptococcus thermophiles is 

5'-NGGN G-3' or 5'-NNAGAAW-3'[36,37], for 

Staphylococcus aureus is 5'-NNGRRT-3' or 5'-

NNGRR(N)-3'[38,39], for Neisseria meningitidis is 5'-

NNNRRT-3' or 5'-NNNNGMTT-3'[40], and for 

Francisella novicida (FnCpf1) is 5'-NGG-3'[41]. 

Nucleotide bases are represented by N; G shows 

guanine, R indicates purine A or G, M represents 

nucleotide A or C, and W denotes weak bond A or T. 

 

Different Cas types  

In order to enhance precise genome editing using the 

CRISPR-Cas system, several other Cas endonuclease 

proteins and Cas9 variants with different features and 

PAM specificities have been studied and developed as 

gene editing tools. Three variants of the Cas9 as genome 

editors have been designed and used so far. The first, 

WT Cas9, cleaves double-stranded DNA at a target site 

using HNH and RuvC-like NUCs[42-45]. Various 

methods have been developed to increase on-target 

efficiency and reduce potential off-target mutagenesis 

of WT Cas9 such as shortened and modified sgRNAs, 

purified Cas9 ribonucleoproteins, engineered Cas9 

protein, FokI-Cas9 fusion nucleases, and paired 

catalytic mutant Cas9n. WT Cas9 can be converted into 

second variant Cas9n by introducing point mutations in 

one of the NUCs (RuvCD10A or HNHH840A). Cas9n 

produces single-strand breaks rather than a DSB. To 

produce DSBs with Cas9n, specific binding of two 

gRNAs, placed on opposite strands, is required[46-48]. 

Cas9D10A nickase was successfully exploited to target 

genes for the DNA-damage response proteins MDC1, 

53BP1, RIF1 and P53, and Lamin A/C (the nuclear 

architecture proteins) in three different human cell 

lines[45]. The third variant of SpCas9 is nuclease-

deactivated Cas9, called dCas9, which is produced 

through D10A and H840A mutations at the HNH and 

RuvC NUCs, respectively. The dCas-9 nuclease does 

not have DNA cleavage activity, but its DNA-binding 

activity has been still retained[49]. Thus, the dCas9 can 

be utilized to precisely and specifically bind to the 

targeted site within the genome, without cutting the 

DNA. The CRISPR/dCas9 DNA-targeting technique 

has various applications in many areas. For instance, the 

dCas9 protein can be fused with a variety of functionally 

active domains to directly modify transcription without 

genetically changing the DNA sequence[50-52]. Effector 

domains may include epigenetic repressing domains to 

create CRISPR inhibitors, such as Krüppel-associated 

Box or Sin3a-interacting domain, that silence the 

expression of the target gene by interfering with 

transcriptional initiation (via obstruction of RNA 

polymerase binding and elongation[53-55]. The 

CRISPR/dCas9 can also be fused to the transcription 

activator domains to produce a CRISPR activator for 

gene activation by recruiting transcription factors to the 

target gene. Until date, many transcriptional activators 

have been developed. VP64 (4× fusion of the VP16 

transcriptional activation protein derived from herpes 

simplex virus) is a widely used activator domain for 

modest gene activation[56-59] (Fig. 2A). VPR is a 

tripartite complex consist of VP64, P65, and Rta fused 

with dCas9 in order to activate transcription[60] (Fig. 

2B). SAM is a combination of dCas9/VP64 protein 

engineered with aptamers, which binds to MS2, HSF1, 

and p65 proteins. dCas9-VP64-SAM acts as a strong 

transcriptional activator[61,62] (Fig. 2C). SunTag system 

uses up to 24 repeats of VP64 instead of a single copy at 

each target site. Thus, dCas9-SunTag recruits more 

transcriptional machinery to the targeted gene. The 

limitation of this platform is the complexity of its 

construction[63,64] (Fig. 2D). Epigenetic modifications 

are a wide range of changes in gene expression without 

altering the DNA sequence. Epigenetic dysregulation is 

correlated with alterations in gene expression levels and 

disease states. Recently, targeted editing of the 

epigenome has become feasible using the CRISPR/Cas9 

system. The dCas9-TET1 system is a dCas9 fused with 

the TET1 protein that is employed for DNA 

demethylation by oxidizing 5-methylcytosine to 5-

hydroxymethylcytosine. Targeted DNA methylation at 

the specific site is achievable by dCas9-DNA 

methyltransferase[65-67]. 

 
CRISPR-Cas12a (Cpf1) 

CRISPR-SpCas9 from Streptococcus pyogenes is type 

II, subtype II-A of CRISPR/Cas Class 2 systems, which 

is the first and most popular genome editing tool. Class 

II type V is divided into four subtypes (V-A, V-B, V-C, 

and V-U). The CRISPR-Cas12a from Prevotella and 

Francisella 1 bacteria belongs to class II, type V, and 

subtype V-A CRISPR system. Cas12a is an 

endonuclease enzyme, which comprises ∼1,300 amino 

acids, and it is a little smaller than SpCas9 with 1,368 

amino acids. There are some differences between 

Cas12a and Cas9 proteins. Cas12a, in contrast to Cas9, 

does not require a tracrRNA for the biogenesis of mature 

crRNA. Unlike Cas9, Cas12a recognizes 5' T-rich PAM 

sequences "TTN/TTTN/TTTV" (N=A, T, C, G; V=A, 

C, G) to generate DSBs. Cas12a cleaves targeted 

sequence, 18-23 nt in the downstream of the PAM in a 

staggered pattern (4 or 5 nt overhang), to create sticky 

ends, contrary to blunt ends produced by Cas9. Cas9 

possesses two endonuclease domains (RuvC and HNH),  
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Fig. 2. Gene activation by engineered CRISPR systems. (A) The dCas9-VP64 was generated by fusing dCas9 with VP64, a strong 

transcriptional activator domain (four tandem copies of VP16, herpes simplex viral protein 16). (B) The VPR system is dCas9-VP64, 

which is fused with two other strong transcriptional activators (p65 and Rta). The VPR system is stronger than the dCas9-VP64 in gene 

activation. (C) The SAM system is a dCas9-VP64 with engineered sgRNAs fused with MS2, HSF1, and p65 proteins, which shows the 

highest levels of gene activation. (D) The SunTag system comprises dCas9 fused to tandem GCN4 peptide repeats, a single chain variable 

fragment (scFv) antibody, and multiple copies of the VP64. 
 
 

 

 

while Cas12a lacks the HNH NUC[68-73]. Because 

Cas12a has ssDNA cleavage activity, it can be 

employed for nucleic acid detection and genome 

manipulation.  Chen  et al. [74]  combined   the   LbCas12a 

with RPA, a sensitive and selective isothermal 

amplification technique, to develop a rapid method 

known as DETECTR. This method has been exploited 

for nucleic acid detection of two high-risk types of HPV 

16 and 18 with attomolar sensitivity. In this study, the 

extracted viral DNA was amplified by isothermal 

amplification. crRNAs are designed to target the 

hypervariable loop V region of the L1 gene of HPV16 

and 18. The crRNA and target DNA binding trigger 

LbCas12a proteins to cleave the target and nontarget 

DNA in which  fluorophores and quenchers are 

connected to different sides of ssDNA[74]. 

 

CRISPR-Cas13a  

CRISPR-Cas13a, previously known as CRISPR-

C2c2, from Leptotrichia species, belongs to the type VI 

class II CRISPR-Cas system. CRISPR-Cas13a is the 

most recently identified editing tool with RNA-guided 

ribonuclease activity, which can be programmed to cut 

single-stranded RNA molecules. The CRISPR-Cas13a 

system contains an effector protein with two predicted 

conserved higher eukaryotes and prokaryotes 

nucleotide-binding RNase domains, which are 

responsible for preferentially cutting the targeted RNA 

at uracils. Previous studies have shown that Cas13a is 

an applicable and effective protein for cutting and 

editing of targeted RNA in both prokaryotic and 

eukaryotic cells, as well as nucleic acids detection with 

high sensitivity[75-80]. In 2017, Gootenberg et al.[75] 

developed a novel CRISPR/Cas13a-based nucleic acid 

detection platform called SHERLOCK, which is created 

by combining the collateral cleavage effect of Cas13a 

with T7 transcription and RPA for detection of Zika and 

dengue viruses with  attomolar sensitivity and 

specificity. The RPA-SHERLOCK platform was also 

used by Li et al.[81] to detect the RNA-based CCHFV, a 

severe hemorrhagic fever virus. Within 30-40 minutes, 

the CCHFV was identified using a rapid, sensitive, and 

precise method with a limit of detection of 1 copy/μl. In 

a different study published in 2019, Liu et al.[82] used the 

SHERLOCK platform (CRISPR/Cas13a, RT-RPA, and 

T7 transcription) to detect Avian Influenza A (H7N9) 

(A) (B) 

(C) (D) 
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virus nucleic acid by targeting its HA and NA genes. 

The platform successfully detected one femtomole of 

HA and NA within 50 minutes.  

 

CRISPR-Cas14  

The newly discovered Cas14, with 400 to 700 amino 

acids, two folds shorter than Cas9 (~1400 amino acids), 

is the smallest and most compact RNA-guided nuclease 

recognized till now. Cas14 was found in the DPANN, a 

superphylum of archaea that contains the smallest cell 

and genome size compared to other archaea. Cas14 

binds to ssDNA and cuts it without requiring a PAM 

flanking the target DNA sequence. The non-specific 

ssDNA trans-cleavage activity of Cas14 has enabled 

more efficient and robust applications of this system in 

the development of DNA detection platforms, such as 

diagnosis of microbial infections, ssDNA viruses, and 

detection/modification of cancer cells[83-85]. 

 

CRISPR-Cas12b  
CRISPR-Cas12b (C2c1) is an intriguing genetic 

engineering tool/genome editing system, which changes 
the molecular biology landscape. It is an RNA-guided 

nuclease derived from the Type II CRISPR-Cas 

bacterial adaptive immune system. Discovered in the 

early 2000s, the tool has revolutionized the development 

and application of genome editing technology. At the 
structural level, Cas12b is a 20-25 kDa single 

polypeptide that consists of two separate domains: the 

RuvC and HNH. The RuvC domain is responsible for 

unwinding the targeted DNA sequence, while the HNH 

domain performs the cutting action. Working in concert, 
the two domains can quickly identify a specific DNA 

sequence and cut it out to convert a single base pair 

mutation. In terms of clinical application, Cas12b has 

been repurposed to enable mammalian genome editing. 
Numerous studies have demonstrated its ability to 

introduce the desired mutations at the single base pair 

resolution in the genomes of living mammals. In 

addition to genome editing, the versatile nature of 

Cas12b can also be used to detect viruses at 
ultrasensitive scales. By employing the C2c1-based 

diagnostic system, the detection of viruses can be 

achieved with high accuracy, specificity, and speed. 

Most recently, the Cas12b platform has been used to 
develop genetic circuitries via combinatorial assembly 

and engineering. This progress paves the way for the 

development of new approaches to gene therapy,  

gene manipulation, and the creation of designer 

organisms[86-89]. As the body of knowledge surrounding 
C2c1 continues to expand, the opportunities for 

broadening its uses increase. By its broadening scope 

and its efficient and precise delivery of genetic 

modifications, it is no wonder that Cas12b is now a 
central figure in modern molecular biology and 

genetics. This ongoing progress of the Cas12b 
technology promises to revolutionize the biomedical 

industry at the cutting edge of genome engineering. 

 
CRISPR-Cas7-11 

The CRISPR-Cas7-11 (CRISPR-Cas III-E) is an 

advanced type of CRISPR-Cas technology capable of 

programmable RNA targeting with a single-protein 

effector. CRISPR-Cas7-11 is unique in its design and 

utility compared to other CRISPR-Cas systems and has 

been the subject of intense study to further understand 

its structure and underlying engineering. The Cas7-11 

protein is a single molecule of a complex design 

composed of three subunits: a CRISPR-associated 

protein, a subunit of structure (CSE), and an RBD. The 

core of the protein is the CSE, which forms an RNA-

binding platform for gRNA molecules. An RBD, 

composes of four distinct alpha-helical domains, 

interacts with the CSE and the gRNA to form a platform 

for executing programmable RNA cleavage. The 

CRISPR-Cas7-11 system works by targeting foreign 

RNA molecules. The gRNA attached to the CSE of the 

Cas7-11 protein is programmed to recognize an mRNA 

molecule of interest. Once the mRNA is identified, the 

RBD inflates and interacts with the target RNA, leading 

to its cleavage. This action results in an mRNA 

degradation pathway, with the cleavage of the targeted 

mRNA molecules precluding translation of the 

sequence and resulting in the loss of expression of the 

target protein. The unique architecture of Cas7-11 and 

its programmable RNA targeting ability have enabled it 

to be utilized in applications related to RNA 

manipulation and gene editing[90,91]. The Cas7-11 

system has already been used in research on the issues 

relating to transcriptome inhibition, target gene 

expression manipulation, and RNAi in a single-protein 

system. Further development of the protein has enabled 

more efficient localization of the various CRISPR-

associated RNAs at different sites and further optimized 

the system for target genes and mRNA editing. The 

CRISPR-Cas7-11 technology has the potential to 

revolutionize gene editing and RNA manipulation due 

to its efficient and single-protein design. With further 

study of the CRISPR-Cas7-11 system, scientists may be 

able to develop new tools and techniques for precision 

genetic engineering, disease treatment, and even 

synthetic biology. One of the unique features of the 

CRISPR-Cas7-11 system is the use of a single protein, 

known as Cas7, to target and cut specific RNA 

molecules. This view is in contrast to other CRISPR 

systems, such as CRISPR-Cas9, which requires multiple 

proteins and a gRNA to achieve the same function. The 

simplicity of the CRISPR-Cas7-11 system makes it 

easier to engineer and use in a wide range of 

 [
 D

O
I:

 1
0.

61
18

6/
ib

j.3
89

8 
] 

 [
 D

O
R

: 2
0.

10
01

.1
.1

02
88

52
.2

02
3.

27
.5

.1
.7

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 ib

j.p
as

te
ur

.a
c.

ir
 o

n 
20

24
-1

1-
22

 ]
 

                             6 / 28

http://dx.doi.org/10.61186/ibj.3898
https://dorl.net/dor/20.1001.1.1028852.2023.27.5.1.7
http://ibj.pasteur.ac.ir/article-1-3898-en.html


Ebrahimi et al. Biomedical Applications of CRISPR-Cas9 Technology 

 

 
Iran. Biomed. J. 27 (5): 219-246 225 

 

applications. Another advantage of the CRISPR-Cas7-

11 system is its ability to target RNA molecules that are 

not translated into proteins. These include regulatory 

RNAs that play an important role in gene expression and 

cell signaling. By manipulating these non-coding 

RNAs, scientists could develop new therapies for 

diseases that are difficult to treat using traditional gene 

editing techniques. However, there are still many 

challenges to be overcome before that the full potential 

of the CRISPR-Cas7-11 system can be realized. These 

challenges include improving the specificity and 

accuracy of the system to minimize off-target effects, as 

well as developing delivery methods that can efficiently 

introduce the system into cells and tissues[92]. Despite 

these challenges, the CRISPR-Cas7-11 system 

represents a promising avenue for genetic engineering 

and RNA manipulation that could have far-reaching 

implications for medicine, industry, and beyond. 

 

Different types of Cas proteins 

By comparing and contrasting the different Cas 

proteins, researchers can gain a better understanding of 

their individual functions, and how they work together. 

This knowledge can then be used to develop new 

applications for CRISPR-Cas technology, which has the 

potential to revolutionize genetic engineering. It can 

also help scientists explore new treatments for genetic 

diseases and create more effective therapies. Each type 

of Cas protein has a different function and structure. For 

instance, Cas9 proteins have a DNA cutting function, 

while Cas12a proteins possess a DNA cleaving 

function[34,69,78,85,93,94] (Table 2). 

 

Applications of CRISPR-Cas Systems 

In just ten years, the RNA-programmable site-specific 

CRISPR–Cas genome editing tool has become one of 

the most famous discoveries in biology and has an 

enormous impact on the life sciences. Scientists have 

applied CRISPR systems in many areas, including the 

medical field, biotechnology, and agriculture. Herein, 

we review some of the main applications of CRISPR 

technology. 

 

Establishing cell and animal models of human 

diseases 

The development of cellular and animal models is one 

of the early applications of the CRISPR-Cas system, 

which is useful to realize the reason behind diverse 

diseases and clarify molecular pathways used for more 

effective therapeutic strategies. Traditional methods for 

generation of cell and animal models of human diseases 

are complex, costly and time-consuming. Since the 

discovery of CRISPR-Cas systems, the generation of 

genetically modified cell and animal models has become 

significantly simpler in a highly efficient approach. 
Genetically modified animal models created using 

CRISPR technology, have a wide range of applications, 

such as their use in pharmaceutical and biotechnological 

production. They can also be used to study specific 

genes, investigate their functions and evaluate the 

mechanisms and progression of diseases in order to 

assess potential therapies. As one of the most common 

models for biological research, as well as animal studies 

(rats, Caenorhabditis elegans, drosophila, zebrafish, 

frogs, pigs, goats, and cynomolgus monkey models), the 

CRISPR-Cas tool has already been used to manipulate 

genes in mice[95-100]. So far, modeling diseases with 

CRISPR have been created for lung, pancreatic, brain, 

and hematopoietic cancers[101-107], cardiovascular 

disorders, cardiomyopathy[108], muscular dystrophy[109], 

HD[110], albinism[111], obesity[112], hemophilia B[113], and 

infectious diseases. In addition, the CRISPR-Cas system 

has been used to produce in vitro models for a wide 

variety  of diseases. CRISPR-Cas can edit multiple sites, 

 

 

 
    Table 2. Comparison of different types of Cas proteins and their characterization 

Cas 

protein 
Source 

Amino acid 

size 

Protein size 

(kDa) 

PAM 

sequence 

Cutting  

site 

Nucleic acid  

cleavage 

Cas9 Streptococcus pyogenes 1,368 10-14 NGG ~3 bp 5′ of PAM DNA blunt ends 

       

Cas12a Acidaminococcus sp. 1,348 7-8 TTTV ~12 bp 5′ of PAM DNA staggered end 

       

Cas12b 
Lachnospiraceae 

bacterium ND2006 
1,365 6-7 TTTN ~3 bp 5′ of PAM DNA blunt ends 

       

Cas13a Leptotrichia shahii 1,204 8-9 GNNG ~4 bp 5′ of PAM DNA staggered end 

       

Cas13b 
Lachnospiraceae 

bacterium A2-165 
1,138 8-9 GNNN ~4 bp 5′ of PAM DNA blunt ends 

       

Cas14 Neisseria meningitidis 1,204 2-3 ATTT ~4 bp 5′ of PAM DNA staggered end 
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             Table 3. Common CRISPR/Cas9 delivery strategies 

Methods 
Delivery 

format 
Efficiency Safety Cost Advantages Disadvantages 

D
el

iv
er

y
 s

tr
a

te
g

ie
s 

C
h

em
ic

a
l 

a
n

d
 p

h
y

si
ca

l 
d

el
iv

er
y

 m
et

h
o

d
s Lipid nanoparticles  

DNA, 

mRNA 

protein 

Low Low Low 

FDA-approved; 

Low stress to the 

cells 

Requires extensive 

optimization, variable 

efficiency 

       

Electroporation 

DNA, 

mRNA 

protein 

High Low High Easy to operate 
Cell viability issue; 

in vivo work difficult 

       

Microinjection 

DNA, 

mRNA 

protein 

Low Low High 

Direct delivery; 

Dosage more 

controllable 

Technical challenging; 

in vivo work not 

feasible 

       
Cell penetrating 

peptide 
Protein Low Low Low No risk of virus Requires extensive 

optimization, variable 

efficiency Gold nanoparticle Protein Medium Low Medium No risk of virus 

        

V
ir

a
l 

d
el

iv
er

y
 m

et
h

o
d

s 

Lentivirus DNA High High Low 
Large cloning 

capacity 

Random integration; 

insertional mutagenesis 

       
Adenovirus DNA Medium Medium Medium Non-integrating Immune response 

       
Adeno-associated 

virus 
DNA Medium Low Medium Non-integrating 

Limited cloning 

capacity 

       

Extracellular 

vesicle 
Protein Medium Low Low 

Non-integrating; 

multiplexible; 

all-in-one format 

Limited quantification 

method 

 

 

 

 

simultaneously, by delivery of several gRNAs and Cas 

endonuclease  using  different  strategies  (Table 3). This 

unique advantage makes this tool an applicable 

technique for producing a cancer model with complexity 

similar to that occurs in   humans.  Matano   et  al.[114]   

generated   a   colorectal cancer model by targeting 

multiple genes in the human colon epithelium using the 

CRISPR-Cas9 genome-editing tool. Heckl et al.[104] 

generated a model of AML by using the CRISPR-Cas9 

to introduce multiple gene mutations, including 

epigenetic modifiers, transcription factors, and cytokine 

signaling genes in mouse HSCs. The iPSCs are highly 

attractive cell resources in disease modeling and 

regenerative medicine based on their unlimited self-

renewal and multiple differentiation capability. In recent 

years, numerous novel disease models have been 

generated by CRISPR-Cas9-edited iPSCs, including 

Parkinson’s, Niemann-Pick type C, and SCD, as well as 

β-thalassemia, Rett syndrome, cystic fibrosis, and α1-

antitrypsin deficiency[115-117].  

 

Therapeutic application of CRISPR-Cas system 

The CRISPR-Cas, as a great potential genome editing 

tool, has been employed in a wide range of therapeutic 

disorders, such as cancer[118,119], as well as genetic, 

infectious and neurodegenerative diseases (Table 4). 

Hemoglobinopathies, such as β-thalassemia and SCD 

are a group of autosomal recessive hereditary single-

gene diseases caused by absence/reduced β-globin chain 

synthesis or production of a structurally unstable β-

globin chain in the hemoglobin tetramer. β-thalassemia, 

a prevalent monogenic and inherited blood disorder, is 

globally caused by more than 300 different point 

mutations and small Indels within the human HBB 

gene[120,121]. In recent years, the only available treatment 

for β-thalassemia and SCD has been allogeneic bone 

marrow transplantation. However, the limited 

availability of human leukocyte antigen-matched donors 

makes it a challenging and restricted approach. Thus, 

there is no defined therapy for people suffering from β-

thalassemia  and  SCD.   Alternatively,   allogeneic  HSC  
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          Table 4. Applications of CRISPR/Cas technology as therapeutic strategies 

Disease Target genes Editing method Reference 
 

β-thalassemia 
HBB Deletion mutation [128] 

BCL11A Gene deletion [129,130] 

    

 

SCD 
HBB Insertion [131] 

BCL11A NHEJ/Indel [132] 

    

Hemophilia A F8 Inversion-corrected iPSC cells [133] 

    

Hemophilia B F9 Gene correction [134] 

    

HD HTT Deletion/NHEJ [135] 

    

Cystic fibrosis CFTR Gene correction  [136] 

    

Duchenne musculardystrophy Dystrophin  Gene correction/deletion [137-140] 

    

Diabetes mellitus type 1 DMPKexon 15 Gene editing [141] 

    

Cancer PD-1 Gene knockout [142] 

    

HIV U3 LTR region Gene knockout [143] 

    

HIV CCR5  Gene knockout [144-146] 

    

HPV E6 and E7 Gene knockout [147,148] 

    

HBV cccDNA Gene knockout [149-151] 

    

Phlebotomus papatasi rel Gene knockout [152] 

    

Malaria FREP1 Gene knockout [153] 

    

Zika virus RNA RNA editing [154] 

 

 

 

gene therapy, which relies on the transmission of the 

normal HBB via lentiviral vectors, is a promising 

approach for treating thalassemia and SCD[122-124]. The 

first cell-based gene therapy entitled Zynteglo 

(betibeglogene autotemcel), an autologous CD34+ cells 

encoding globin gene for the treatment of individuals 

with transfusions dependent β-thalassemia, was 

approved on August 17, 2022 by the US Food and Drug   

Administration  (FDA)[125,126]. The discovery of  

CRISPR-Cas9 in 2012, which revolutionized the field of 

genetic manipulation, has emerged as a promising 

player in the gene therapy approach. Multiple research 

groups have used CRISPR-Cas9 in patient-derived 

HSPCs and  patient-derived  iPSCs  to  repair  β-

thalassemia and SCD mutations in the 

HBB[124,126,127,130,154-158] Moreover, recent therapeutic 

strategies are based on the use of CRISPR- Cas9 to 

reactivate HbF expression. Interestingly, the results of 

studies have shown that increased HbF can mitigate the 

clinical symptoms of these diseases[128,129-131,159,160].  

BCL11A is a master regulator of γ-globin gene that 

silences and inhibits HbF expression162. In previous 

studies, it has been demonstrated that targeted 

disruption of the BCL11A erythroid-specific enhancer 

using CRISPR-Cas9 in the second intron, increases the 

production of HbF, thereby ameliorating the severity of 

β-thalassemia and SCD, which can be considered a 

potential curative therapeutic strategy for β-

hemoglobinopathies[161-164]. CTX001 is an ex vivo 

CRISPR-Cas9 gene-edited therapy for reactivating HbF 

in HSCs from patients suffering from SCD and 

transfusion-dependent β-thalassemia[165]. Several 

clinical trials are underway to assess the safety and 

efficacy of CRISPR system in β-hemoglobinopathies 

and other diseases (Table 5). 

 

Duchenne muscular dystrophy  

DMD is a rare neuromuscular and X-linked recessive 

disease in children caused by mutations in the 

dystrophin gene and characterized by muscle weakness, 

loss of movement, and early death. DMD occurs about 

1 in 3,500 to 5,000 newborn males worldwide. The most  
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    Table 5. Current clinical trials in hematology using the CRISPR/Cas9 system 
 

Diseases 
Clinical trial 

no. 
Method Type of edit Target gene Phase Delivery method Sponsor 

β-thalassemia NCT03655678 Cas9 Gene disruption BCL11A II/III 
Electroporation  

(ex vivo) 

Vertex 

Pharmaceuticals 

        

HIV NCT05144386 Cas9 Gene disruption 

Three undisclosed 

genomic sites in 

the HIV DNA 

II AAV9 (in vivo) 
Excision 

BioTherapeutics 

        

Sickle cell 

disease 
NCT03745287 Cas9 Gene disruption BCL11A II/III 

Electroporation  

(ex vivo) 

Vertex 

Pharmaceuticals 
        

Acute 

lymphoblastic 
leukemia, T-

ALL 

NCT04984356 Cas9 Gene knock-out CD7, TRAC II 
Electroporation  

(ex vivo) 
Wugen inc. 

        

AML NCT05066165 Cas9 

Gene knock-

out, gene 
knock-in 

WT1-specific 

TCR (knock-in), 

TRAC (knock-
out), TRBC 

(knock-out) 

II 
Undisclosed 

 (ex vivo) 

Intellia 

Therapeutics 

        
Metastatic 

gastrointestin
al epithelial 

cancer, GI, 

NCT04426669 Cas9 Gene knock-out CISH II Ex vivo 
Intima 

Bioscience, Inc. 

        
Multiple 

Myeloma, 

MM, 

NCT04244656 Cas9 

Gene knock-

out, gene 

insertion 

BCMA I 
Undisclosed 

 (ex vivo) 

CRISPR 

Therapeutics AG 

        

Non-small 

cell lung 
cancer 

NCT05566223 Cas9 Gene knock-out  CISH II Ex vivo 
Intima 

Bioscience, Inc. 

        

Blindness, 
Leber 

Congenital 

Amaurosis, 

NCT03872479 Cas9 Gene correction CEP290 II 

Adeno-associated 

virus (AAV5) 
(in vivo) 

Editas Medicine, 

Inc. 

        

Type 1 

diabetes 
NCT05565248 Cas9 

Disruption, 

insertion 
- II Ex vivo 

CRISPR 

Therapeutics AG 

CISH, cytokine inducible SH2 containing protein; BCMA, b-cell maturation antigen 

 

 

 

common type of mutation in the dystrophin gene 

involves the deletion of one or more exons, leading to 

frameshift or nonsense mutations, resulting in the 

absence of functional dystrophin protein[166-168]. In 

2014, Long et al.[136] used the CRISPR-Cas9 system for 

the first time in mouse zygotes to correct mutations and 

restore the expression of dystrophin. In 2017, Lattanzi 

et al.[137] reported successful CRISPR-Cas9-mediated 

restoration of dystrophin expression in DMD myoblasts 

by removing the duplication of exon 2 and intron 2 in 

the dystrophin gene.  In  2017,  El Refaey  et al.[139]  used 

the CRISPR-Cas9 technique for deletion of exon 23 in 

dystrophic mice in which the restoration of dystrophin 

protein was confirmed. In 2019, Min and Lee[138] used 

adeno-associated virus serotype 9-mediated Cas9 and 

sgRNA to restore the exon 50 deletion and exclude exon 

44 mutations in cardiomyocytes obtained from patient-

derived iPSCs, as well as in a mouse model. The results 

showed the capability of CRISPR to remove mutations 

that result in DMD. 

 

Cystic fibrosis 

CF is the most common autosomal recessive and 

monogenic lung disease that occurs due to mutations in 

the CFTR gene[169]. The CFTR protein is a chloride 

channel located on the surface membrane of epithelial 

cells and transports small ions through the membrane of 

multiple organs, including lung, intestine, and 

pancreas[170]. CRISPR-Cas system has been used to 

correct CFTR mutations in iPSCs from CF patients, as 

well as cultured intestinal stem cells. Researchers have 

utilized the CRISPR-Cas system to precisely repair 

CFTR-bearing homozygous F508 deletions (F508del) in 

exon 10[171,172].  
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Huntington’s disease 

HD is a genetic disorder caused by a mutation in the 

HTT gene. The mutation leads to the production of an 

abnormal protein that accumulates in the brain, causing 

damage to nerve cells and leading to progressive 

neurological symptoms such as involuntary movements, 

cognitive decline, and psychiatric disturbances[173]. 

Currently, there is no cure for HD, and the available 

treatments only alleviate symptoms. CRISPR-Cas9 

technology offers a promising approach for treating HD 

by correcting the underlying genetic mutation. CRISPR 

technology can be used to remove or replace the mutated 

section of the HTT gene with a healthy version. In one 

study, researchers used CRISPR-Cas9 to selectively 

target and edit the mutant HTT gene in mouse models 

of HD. The treatment resulted in significant 

improvements in motor function and reduced 

accumulation of mutant HTT protein in the brain[174].  

Another study used CRISPR-Cas9 to correct the HTT 

gene mutation in human embryonic stem cells derived 

from patients with HD. The corrected cells were then 

differentiated into neurons, which showed normal levels 

of HTT protein expression and function[175]. While these 

studies show promise for using CRISPR-Cas9 as a 

treatment for HD, there are still challenges that are 

required to be addressed before it can be applied 

clinically. One major concern is ensuring that CRISPR-

Cas9 targets only the mutant HTT gene and no other 

genes with similar sequences. Additionally, delivery 

methods are needed to be optimized to ensure the 

efficient delivery of CRISPR-Cas9 into target cells 

without causing off-target effects or immune reactions. 

While there are still challenges to overcome, continued 

research in this area could lead to a cure for this 

devastating disease. 

 

Blindness 

CRISPR technology has the potential to treat various 

genetic disorders, including inherited forms of 

blindness. IRDs are a group of genetic disorders that 

affect the retina, leading to vision loss and blindness. 

These diseases are caused by mutations in genes that are 

essential for the function and survival of photoreceptor 

cells in the retina[142]. CRISPR-Cas9 can be used to 

correct these mutations by targeting and editing the 

DNA sequence of the affected gene. Several studies 

have demonstrated the potential of CRISPR-Cas9 in 

treating IRDs. In 2017, researchers used CRISPR-Cas9 

to correct a mutation in a gene called CEP290, which is 

associated with Leber congenital amaurosis, a severe 

form of childhood blindness. The study showed that 

CRISPR-Cas9 could effectively correct the mutation in 

human cells and restore normal protein function[176]. 

Researchers have used CRISPR-Cas9 to correct 

mutations in genes associated with retinitis pigmentosa, 

another form of inherited blindness that impairs vision 

due to the loss of photoreceptor cells, which can lead to 

irreversible blindness[177,178]. Recently, Tsai et al.[179] 

used CRISPR/Cas9 to remove and replace Rho. The 

authors tested this method on two mouse samples 

against the P23H and p.Asp190Asn mutations harboring 

the CRISPR/Cas system using the dual vector system 

AAV2/8 and the exogenous RHO gene. Both models 

showed an increase in outer nuclear layer thickness of 

up to 35% and a significantly improved ERG response 

after removal and replacement, in contrast to the 

addition of only one gene. The study showed that 

CRISPR-Cas9 could effectively correct these mutations 

in patient-derived cells and restore normal protein 

function. While these studies show promising results, 

there are still challenges needed to be addressed before 

CRISPR-Cas9 is used as a clinical treatment for IRDs. 

These include improving delivery methods for carrying 

CRISPR components to target cells within the retina and 

ensuring safety and efficacy in clinical trials. 

 

Infectious diseases 

Human immunodeficiency virus 

AIDS, caused by HIV-1, is still a severe health 

problem worldwide. According to the World Health 

Organization (http://www.who.int/hiv/en/), 38.4 million 

people in the world were living with HIV in 2021, HIV-

1 is an enveloped retrovirus comprising two copies of a 

9.8 kb positive-sense RNA genome flanked by two LTR 

sequences. The HIV genome encodes proteins required 

for its life cycle, including gag, env, pol, vif, vpr, tat, 

vpu, rev, nef, and the antisense protein[180]. HIV-1 enters 

host cells by initial binding of its gp120 Env protein to 

the CD4 receptor on the surface of target cells, including 

CD4+ T helper lymphocytes, macrophages, and 

microglial cells. This interaction induces subsequent 

binding with the chemokine receptor CCR5 or CXCR4 

as a co-receptor on the membrane of the target cell, 

which is essential for fusion between the virus Env and 

the cell membrane[181,182]. Highly active antiretroviral 

therapy is the primary method for controlling viral load 

by suppressing virus replication but fails to eradicate 

latent viral reservoirs in patients. In recent years, the 

CRISPR-Cas system has also provided new hope to cure 

HIV-1/AIDS. In 2014, Hu et al.[142| used the CRISPR-

Cas system to target LTR regions at both ends of viral 

genes in HIV-1 latent-affected myeloid lineage, 

promonocytic, and T cells with significant loss of LTR 

expression. In addition, blocking CCR5, an essential co-

receptor for HIV-1 entry into the host cell, is considered 

the most potential therapeutic strategy for AIDS. In 

2013, Cho et al.[183] utilized the SpCas9 to induce 

mutations with a frequency ranging from 5% to 33% in 
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human cells within the CCR5 gene. In 2014, Mandal et 

al.[145] used the CRISPR-Cas9 genome editing tool to 

delete the CCR5 gene in CD34+ HSPCs. Their results 

showed 42% biallelic inactivation frequency for CCR5 

in CD34+ HSPCs with low off-target mutagenesis. 

Another essential co-receptor that mediates HIV-1 entry 

into the cells is CXCR4. In 2015, Hou et al.[184] utilized 

the CRISPR-Cas9 genome editing system to disrupt the 

CXCR4 gene in human primary CD4+ T cells. The 

edited cells showed resistance to X4-type HIV-1 

infection, as well as 40% mutagenesis with low off-

target effects. Additionally, some research groups 

applied the CRISPR-Cas9 tool to investigate the 

simultaneous manipulation of CXCR4 and CCR5 genes 

in various cell lines. The results showed that the 

manipulated cells were significantly protected from 

HIV-1 infection without off-target mutagenesis or 

cytotoxicity effect[145,144]. 

 

Human papillomaviruses 

HPVs are double-stranded DNA viruses with a 

genome size of about 8000 bp. More than 200 types of 

HPVs have already been identified. HPV is the major 

cause of cervical cancer in women, as well as anogenital 

and head and neck cancers in men. More than 50% of 

HPV-positive cervical cancers are associated with 

HPV16, and about 12% with HPV18, which are both 

considered high-risk HPVs[185-188]. HPV E6 and E7 are 

the vital oncogenes responsible for accelerating HPV-

induced carcinogenesis[188]. CRISPR-Cas9 has been 

used to target the HPV16 and HPV18 E6 and E7 in 

HeLa  cells, as well as cervical carcinoma cell lines, 

which results in the induction of p53 or Rb, leading to 

cell cycle arrest and cancer cell death[189]. In 2014, Zhen 

et al.[190] targeted the promoter of HPV16 E6 and E7 

using the CRISPR-Cas9 in SiHa cells and tumor animal 

models. Their results showed the induction of p53 and 

p21 proteins, which resulted in the inhibition of 

tumorigenesis. 

 

Hepatitis B virus 

Hepatitis B is a contagious liver infection caused by 

the HBV, a major global public health problem. Many 

antiviral agents have been used to cure HBV infection; 

however, they are not effective in eradicating HBV due 

to their inability to remove cccDNA, a template used by 

HBV for replication. cccDNA completely persists 

during therapy and cannot be eliminated by current 

antiviral therapies[191]. Thus, new treatments are 

required to effectively eliminate the cccDNA. Many 

research groups have used CRISPR-Cas9 to target the 

HBV core and surface proteins in animal models and 

hepatoma cell lines such as, HepG2, Huh-7, HepG2-H1, 

and HepG2.2.15. The results showed that the 

elimination of episomal cccDNA led to the inhibition of 

HBV replication and expression both in vitro and in 

vivo[148-150,192]. 

  

 

 
 

Fig. 3. The general principle of nucleic acid detection by the DETECTR based on CRISPR/Cas 12. Nucleic acid is extracted from 

clinical samples, and the target sites are amplified by RT-RPA. Detection is performed in a reaction mixture containing T7 RNA 

polymerase, Cas12a, a target-specific gRNA, and an ssDNA probe that fluorescence when cleaved. Gray circles indicate quenchers that 

are connected by a short oligonucleotide. F, FAM 
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Severe Acute Respiratory Syndrome Coronavirus 2 

In December 2019, a novel beta coronavirus, namely 

SARS-CoV-2, was identified in Wuhan, China. SARS-

CoV-2 causes a respiratory illness called COVID-19. 

The SARS-CoV-2 virus quickly spread worldwide and 

led to a pandemic[193,194]. A low-cost, rapid, simple, and 

sensitive point-of-care testing for the early detection of 

viruses in pandemics such as COVID-19 was required. 

In this regard, the CRISPR genome editing system can 

be applied for nucleic acid detection, owing to its 

exclusive features. For this purpose, researchers have 

utilized different types of CRISPR for the design and 

development of CRISPR-based diagnostic systems.  

Broughton  and  colleagues[195]  used the called 

DETECTR. In CRISPR-Cas12a to develop an accurate, 

simple, and rapid (<40 min) diagnostic method for 

SARS-CoV2 this method, gRNAs were designed to 

detect SARS-CoV-2, bat SARS-like coronavirus, and 

SARS-CoV in the E gene and specifically detects only 

SARS-CoV-2 in the N gene (Fig. 3). Ding et al.[196] 

enveloped an all-in-one dual CRISPR-Cas12a 

diagnostic method rapidly targeted nucleic acids. In this 

method, all components for CRISPR-mediated 

detection and nucleic acid amplification are merged into 

a single reaction. CREST was introduced by Rauch et 

al.[197] for SARS-CoV-2 detection. The CREST assay 

was developed to address the main barriers of virus 

detection, including high cost, limited access to 

equipment and materials, and lack of highly trained 

operators. Azhar et al.[198] applied a Cas9 ortholog from 

FnCas9 to develop FELUDA. In the FELUDA-based 

lateral flow assay, gRNAs were designed to target the 

NSP8 and nucleocapsid phosphoprotein of SARS-CoV-

2 with rapid, cost-effective, and machine-independent 

detection of a small amount of SARS-CoV-2 RNA 

within one hour. Recently, Yoshimi et al.[199] have 

developed a CRISPR/Cas3-based detection method 

called CONAN. The CANON assay combines 

isothermal amplification methods for a fast, sensitive, 

and tool-free diagnosis of SARS-CoV-2. 

 
Parasites 

Parasites are biological organisms that live and feed 

on another organism, known as a host. These organisms 

can cause severe health issues in humans and animals, 

making the development of new treatments highly 

necessary. In principle, parasitic diseases are the main 

reason for morbidity and economic constraints. CRISPR 

gene editing technology has emerged as a powerful tool 

in the fight against parasites. With CRISPR, genetic 

sequences can be specifically targeted and edited to 

make precise modifications. CRISPR/Cas9-mediated 

gene editing, for instance, could be used to disrupt the 

reproduction of parasites or selectively edit their 

virulence genes, which would lead to the reduced 

parasite transmission and virulence, ultimately aiding in 

the development of novel methods for controlling 

parasitic infections. Moreover, CRISPR has been used 

to study the functional genomics of parasites, offering 

new insights into their biology and identifying potential 

drug targets. A study demonstrated the use of 

CRISPR/Cas9-mediated gene editing to investigate new 

targets for drug development against the protozoan 

parasite Trypanosoma brucei, which causes African 

trypanosomiasis. The study identified several proteins 

that play an essential role in the parasite's life cycle, 

which could be targeted with new therapeutics[200]. 

Additionally, CRISPR technology could potentially be 

used to develop vaccines against parasites by enabling 

the manipulation of antigens to enhance host’s 

immunity. CRISPR technology also offers the 

possibility of creating genetically modified parasites 

that can serve as live vaccines[201]. Hence, the design and 

development of proper detection methods and efficient 

treatments are essential. CRISPR-Cas9 has been used 

for genome editing of Leishmania, Plasmodium spp., 

Toxoplasma gondii, and Trypanosoma cruzi. It has also 

been employed in the modification of medically 

important vectors such as different species of mosquitos 

and water fleas. Understanding diverse aspects of 

parasite biology has greatly benefited from the 

development of CRISPR technology. Malaria is a life-

threatening and severe disease caused by the 

Plasmodium parasites species, which is transmitted to 

humans through the bite of infected female mosquitoes 

of the Anopheles genus. Malaria remains a public health 

threat worldwide, causing the death of more than 

400,000 people annually[202,203]. Genome editing 

technology, especially the CRISPR/Cas9 system, 

enables researchers to investigate genetically 

engineered mosquitoes to eradicate malaria. In 2014, 

Ghorbal et al.[204] successfully used the CRISPR/Cas 

system to edit the genome of P. falciparum through gene 

disruption and single-nucleotide gene editing. In 

addition, they generated an artemisinin-resistant strain 

by introducing a mutation (C580Y) in the 

PF3D7_1343700 K13-propeller. Artemisinin-based 

combination therapy is a primary treatment for P. 

falciparum, and mutations in K13-propeller domains are 

associated with the artemisinin phenotype. The sexual 

phase of malaria parasites, which results in the 

formation of infectious sporozoites, is necessary to be 

completed by transmission to a mosquito vector. 

Inhibiting the fertility of mosquitoes through chemical 

spraying or genetically modifying the population to 

render them infertile is one of the most effective 

strategies to combat malaria. Transgenic mosquitoes do 

not transmit the malaria parasite because they express 
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inhibitors of Plasmodium growth. Gantz et al.[205] used 

the CRISPR/Cas9 system to integrate antiparasite 

effector genes against the P. falciparum ookinete 

proteins, such as single-chain antibodies m1C3 to target 

chitinase 1 and m2A10 to target CSP, to prevent malaria 

transmission. In 2018, Dong et al.[152] used the 

CRISPR/Cas9 system to eliminate the FREP1 gene, 

which encodes an immune protein, from the genome of 

Anopheles gambiae mosquitoes, to generate mosquitoes 

that are highly resistant to malaria parasites. FREP1 acts 

as a receptor for plasmodium on the midgut of the 

Anopheles mosquito. Consequently, the knockout of the 

FREP1 mosquitoes makes them resistant to the parasite 

and significantly reduces the likelihood of transmitting 

the malaria parasite to the host. The CRISPR system has 

widely been used to knock out target genes, replace 

nucleotides, and tag endogenous loci with epitope tags 

in order to permanently alter the target genes. The 

CRISPR tool, however, has only been sporadically used 

to control gene expression through epigenetic 

regulation. A dCas9 was successfully used in a recent 

study by Xiao et al.[206] to epigenetically regulate the 

transcription of genes related to parasite invasion, 

including reticulocyte binding protein homology 4 

(RH4) and erythrocyte binding antigen 175. In order to 

activate the expression of RH4, the GCN5, as a histone 

acetyl transferase, was fused to the dCas9 

(dCas9GCN5). The recombinant dCas9GCN5 was 

specifically directed to the promoter region of the rh4 

gene by the RH4sgRNA. The findings showed a 

significant overexpression of the rh4 gene in P. 

falciparum using the CRISPR/dCas9GCN5 system. 

Moreover, PfSir2a, as a histone deacetylase, was fused 

to dCas9 (dCas9Sir2a) to repress the expression of the 

eba-175 gene in P. falciparum. The P. falciparum eba-

175 gene was disrupted using CRISPR/dCas9Sir2a, 

which inhibits parasites from invading erythrocytes 

treated with chymotrypsin.  Furthermore, the gene 

PfSET1 of P. falciparum, which is essential for the 

growth of its P. falciparum asexual stage, was 

suppressed using the CRISPR/dCas9Sir2a system. The 

phenotypic changes in parasite growth were caused by 

the precise inactivation of the PfSET1 gene. In addition 

to the asexual blood stages of the malaria parasite life 

cycle, the CRISPR tool has been applied to identify the 

functional role of genes in other steps of the parasite's 

life cycle. Both eukaryotic organisms and malaria 

parasites use many of the same transcription factors. 

Unexpectedly, a family of genes encoding Apetala2 

(ApiAP2) proteins, which are essential for parasite 

development in Plasmodium, has been discovered in 

many plants. In a study performed by Zhang et al.[207], 

12 out of 26 Plasmodium yoelii ApiAP2 genes were 

successfully knocked out using the CRISPR/Cas9 

system, and the findings revealed the crucial role of 

some of the genes in the development of gametocytes, 

oocysts, and sporozoites. The CRISPR/Cas9 system is 

also used to identify antimalarial compounds and 

elucidate the mechanisms underlying their actions. 

Benzoxaboroles have demonstrated strong activity 

against a variety of infectious pathogens. Using the 

CRISPR/Cas9 system, Sonoiki et al.[208] demonstrated 

the potent anti-malarial activity of AN3661 (a 

benzoxaborole) against cultured P. falciparum asexual 

blood stage parasites. They made mutations to the active 

site of the cleavage and polyadenylation specificity 

factor subunit 3 (CPSF3) gene where AN3661 should 

bind. In addition to malaria, CRISPR technology could 

be used to create genetically engineered mosquitoes that 

are resistant to infection by the Zika virus. The Zika 

virus is a flavivirus spread by the bite of infected 

mosquitoes of the Aedes aegypti species, which causes 

fever, rash, red eyes, muscle pain, headache, and birth 

defects and is linked to the Guillain-Barré syndrome. 

There is no specific treatment and vaccine for the Zika 

virus[209]. In 2022, Chen et al.[153] used CRISPR-Cas13b 

to develop an anti-Zika system in 293T cell lines. The 

study demonstrated the efficacy of CRISPR-Cas13b as 

an anti-RNA virus therapy by degrading targeted viral 

RNA with Cas13. Leishmaniasis is a neglected tropical 

disease caused by protozoan parasites from over 20 

Leishmania species. This vector-borne disease is 

transmitted by about 30 species of infected 

phlebotomine sandflies and is widespread in 97 

countries throughout the world. In spite of 

comprehensive research on various aspects of this 

infectious disease, there is currently no effective or 

preventive strategy against leishmaniasis[210]. In 2015, 

Sollelis et al.[211] applied the CRISPR-Cas9 system to 

knock out the paraflagellar rod-2 genes (a tandemly 

repeated gene family) in the Leishmania major parasite. 

As a result, they obtained null mutants in a single round 

of transfection, as well as the absence of off-target 

editions. In 2015, Zhang et al.[212] developed two loss-

of-function Indel mutations in Leishmania donovani 

through the precise deletion of the 3-kb from LdMT gene 

using CRISPR-Cas9. Furthermore, they identified a 

novel single-point mutation created by CRISPR-Cas9 in 

the LdMT (M381T) gene that led to miltefosine 

resistance, a concern for the only available oral 

antileishmanial drugs. Several research groups have 

successfully removed genes, such as Cysteine 

peptidases, LeishIF4E-3, LeishIF4E1, ubiquitin, 

RAD51-related genes, flagellar motility factor Pf16, 

adenine phosphoribosyltransferase, casein kinase 1.1, 

and HSP23, along with HSP100, from various 

Leishmania species, including Leishmania mexicana, L. 
major, Leishmania tarentolae, L. donovani, and 
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Leishmania braziliensis[213-218]. Chagas disease is an 

inflammatory and infectious disease caused by 

Trypanosoma cruzi. Peng et al.[219] used CRISPR-Cas9 

in T. cruzi to knock down expression of β-

galactofuranosyltransferase enzyme, which plays a role 

in T. cruzi pathogenesis. The results showed a 

significant downregulation in enzyme production 

without evident off-target mutations. In another study, 

Lander et al.[220] used CRISPR-Cas9 to improve the 

analysis of the functionality of the T. cruzi genome. In 

this regard, sgRNAs were designed to disrupt the 

expression of GP72-related genes and paraflagellar rod 

proteins 1 (PFR1) and 2 (PFR2). The results showed that 

the PFR1, PFR2, and GP72 proteins contribute to the 

attachment of flagellar to the cell body and also to the 

motility of the parasites. Scientists are also utilizing the 

CRISPR-Cas9 system for gene editing in mosquitoes to 

modify their genes, with the aim of inhibiting the 

parasite's life cycle and reducing their ability to spread 

pathogens[221,222]. CRISPR can be used to modify a wide 

range of parasites, including Leishmania, Toxoplasma, 

Trypanosoma, and Plasmodium. For instance, the 

Cas9/T7-RNAP construct can be used to induce gene 

deletion or disruption mutants in Leishmania species. 

This technique can also be utilized to develop gene drive 

strategies in insect vectors that transmit parasites from 

one host to another, which could potentially help reduce 

the transmission of diseases caused by these parasites. 

In addition, active RNA interference machinery has 

been developed for use in parasitology research, which 

can be employed to knockdown or knock-in target gene 

into various parasite systems, such as Trypanosoma and 

Plasmodium. This technology enables gene deletions or 

insertions with high transgene copy numbers and 

compensatory adaptations that enable the parasite to 

survive and replicate even after the targeted gene is 

deleted or disrupted. CRISPR has also been explored as 

a potential tool for creating gene drive strategies in other 

systems, such as Trypanosoma. Such strategies could 

potentially increase transgene copy numbers while 

reducing vector populations through increased mortality 

rates of the infected individuals or reduced ability of the 

infected individuals to transmit the disease agent[205]. 

 

CRISPR-based diagnostic methods for detection of 
parasites 

The CRISPR system has been applied for parasite 

detection. In recent years, accurate parasite diagnosis 

has been made possible by combining parasitological 

and CRISPR/Cas systems. In 2022, Dueñas et al.[223] 

developed a CRISPR-based diagnostic tool using the 

CRISPR-Cas12a system to detect Leishmania spp. Two 

gRNAs were designed to target the 18S rDNA (18S 

ribosomal RNA gene), a highly conserved region across 

Leishmania species, and kDNA minicircles that are 

conserved in the Leishmania (Viannia) subgenus.  They 

could identify 5 × 100 (18S rDNA) and 5 × 102 (kDNA) 

parasites/reactions using this system[224]. CRISPR-

based malaria screening has been emerged as a 

promising method for detecting the presence of malaria 

parasites in blood samples. This method utilizes the 

CRISPR/Cas system to target and cleave specific 

sequences of the parasite genome present in a blood 

sample, which can then be detected using various 

molecular methods, such as PCR or fluorescence assays. 

One of the main advantages of using CRISPR-based 

malaria screening is its high specificity and sensitivity. 

Additionally, it has the potential to greatly improve 

diagnostic accuracy and speed, compared to the 

traditional methods such as microscopy. Furthermore, 

CRISPR-based malaria screening can also be used to 

detect drug-resistant strains of the parasite by targeting 

specific mutations in the genome associated with 

resistance. This technology has immense potential in 

preventing and controlling the spread of malaria, 

especially in regions with limited access to the advanced 

diagnostic resources. In a study, researchers utilized the 

CRISPR/Cpf1 (Cas12a), a SHERLOCK-based 

diagnostic platform, to establish an ultrasensitive, one-

pot, lyophilized, and free nucleic acid extraction method 

for detecting and distinguishing P. falciparum (Pfr364 

gene), Plasmodium vivax (18s rRNA), Plasmodium 

ovale (18s rRNA), and Plasmodium malariae (18s 

rRNA). The results indicated an ultrasensitive and 

specific assay for differentiating P. falciparum and P. 

vivax in clinical samples and were able to detect fewer 

than two parasites per microliter of blood[225]. Overall, 

CRISPR-based malaria screening represents a 

promising approach for improving malaria diagnosis 

and management, with potential applications in both 

clinical settings and field studies. In the future, further 

research will be necessary to optimize CRISPR-based 

malaria screening technology and expand its potential 

applications. 

 

Ethical implications of fighting malaria with genome 
editing 

CRISPR-Cas9 technology has shown promising 

results in the development of novel strategies for 

combating parasitic infections and controlling mosquito 

populations, which are important vectors for many 

parasitic diseases. CRISPR has been used to genetically 

modify mosquitoes so that they are unable to transmit 

diseases, such as malaria and dengue fever. CRISPR has 

also been utilized to study the function of genes in 

parasitic organisms and understand their biology, which 

can lead to the development of new drugs and therapies 

for parasitic infections affecting millions of people 
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worldwide[226]. While the potential use of genome 

editing technology to combat malaria is promising, it 

raises ethical concerns that need to be addressed. Some 

of the concerns in using genome editing technology to 

combat malaria include safety-related issues, equity, 

and the unintended consequences of altering the 

mosquito population along with potential environmental 

impacts. When considering the implementation of 

genome editing technology for malaria control, it is of 

most importance to thoroughly evaluate and weigh the 

potential risks and benefits. This evaluation should not 

only include ethical concerns but also take into account 

the views of local communities and stakeholders who 

would be impacted by such interventions. Overall, the 

use of CRISPR technology in parasitology and mosquito 

control holds great promise for improving global public 

health and reducing the burden of parasitic infections 

and mosquito-borne diseases. Continued research and 

development in this field will be critical to fully realize 

the potential of CRISPR technology in addressing some 

of the most pressing public health challenges 

worldwide. It is important for scientists, policymakers, 

and stakeholders to engage in thoughtful discussions 

and collaborations to ensure that the use of this 

technology is safe, ethical, and effective. Furthermore, 

it will be crucial to ensure that these advances are 

accessible and affordable for those who live in low-

resource countries where parasitic infections and 

mosquito-borne diseases are highly prevalent. In 

conclusion, while there are still challenges and 

uncertainties to be addressed using CRISPR technology 

for parasitology and mosquito control, it has the 

potential to revolutionize our approach to global health 

issues and improve the lives of millions of people 

around the world.  

 

CRISPR protein tagging 

CRISPR protein tagging is a revolutionary technique 

that allows for precise labeling and visualization of 

proteins in living cells. This method involves using 

CRISPR-Cas9 to introduce a DNA construct that 

contains the protein of interest fused with a fluorescent 

tag or affinity tag. The tagged protein can then be 

tracked and studied in real-time, enabling researchers to 

gain a better understanding of its function within the 

cell. This technique has the potential to revolutionize 

our understanding of protein function and localization, 

providing more precise analysis and manipulation of 

cellular processes. In the field of parasitology, CRISPR 

protein tagging has proven to be particularly useful in 

studying the complex lifecycle and host interactions of 

parasites. The precise tagging of proteins within 

parasites has been a challenging task for many years. 

This technology has already led to important discoveries 

about the mechanisms underlying malaria transmission 

and infection and has the potential to uncover new 

targets for drug development. Additionally, CRISPR 

protein tagging could be used to explore the diversity of 

parasitic species and their adaptations to different 

environments, providing insight into the evolutionary 

processes that have shaped these organisms over time. 

Overall, this cutting-edge technique is poised to 

significantly advance our understanding of parasitic 

diseases and improve our ability to combat them. One of 

the key advantages of CRISPR protein tagging is its 

versatility. This technique can be applied to a wide range 

of parasitic organisms, from single-celled protozoa to 

complex multicellular worms. It also allows researchers 

to study different stages in the life cycle of parasites, 

such as the transmission from vector to host or the 

development within specific organs. By labeling 

different proteins within these stages, scientists can gain 

a better understanding of how parasites interact with 

their environment and host cells. Furthermore, CRISPR 

protein tagging can be used in combination with other 

techniques, such as transcriptomics and proteomics, to 

generate comprehensive datasets that shed light on 

various aspects of parasite biology. As this technology 

continues to improve and become more widely adopted, 

we can anticipate even more exciting discoveries about 

parasitic diseases in the years ahead. Another advantage 

of CRISPR protein tagging is its potential for drug 

discovery. By identifying key proteins involved in 

virulence and drug resistance, researchers can develop 

targeted therapies that disrupt the parasite's ability to 

survive within the host. This approach has been proven 

to be successful in treating malaria. Clinical trials of 

drugs targeting specific enzymes have shown promises. 

CRISPR protein tagging can be used to screen large 

libraries of compounds for their ability to inhibit or 

enhance specific protein functions, potentially leading 

to the discovery of new drugs with novel mechanisms of 

action. Overall, this technology has the potential to 

significantly improve our ability to treat parasitic 

diseases and reduce their impact on global health[227,228]. 

Researchers have utilized CRISPR protein tagging to 

study PlsoT1, a protein found in the malaria parasite that 

is responsible for the invasion of host red blood cells. 

PlsoT1 is a surface protein that plays a crucial role in the 

initial stages of erythrocyte invasion by the malaria 

parasite. The ability to track PlsoT1 using CRISPR 

protein tagging has led to a better understanding of its 

localization and function during the invasion process. In 

addition, CRISPR protein tagging has been used to 

study other important proteins involved in malaria 

pathogenesis, such as PfEMP1 and CSP. With continued 

advancements in this technology, we can expect even 

more breakthroughs in our understanding of parasitic 
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diseases and the development of new treatments. 

PfEMP1 protein is essential for the cytoadherence of P. 

falciparum-infected erythrocytes within the host, and its 

expression is associated with severe malaria. CSP 

protein is critical for the development of P. falciparum 

sporozoites, which are responsible for transmitting 

malaria from mosquitoes to humans. By using CRISPR 

protein tagging to track the location and activity of 

PfEMP1 and CSP proteins, researchers have gained a 

better understanding of how these proteins contribute to 

pathogenesis and sporozoite development and identify 

potential targets for drug development. Moreover, this 

technique has allowed for visualization of PfEMP1 and 

CSP trafficking within the infected cells, providing 

insights into the cellular mechanisms underlying 

cytoadherence and sporozoite formation[227]. 

CRISPR/Cas9-mediated endogenous C-terminal 

tagging has been utilized to study T. cruzi genes, 

specifically the IP3R. By tagging the IP3R protein and 

observing its localization within the cell, researchers 

have gained a better understanding of its role in 

acidocalcisome function. Acidocalcisomes are acidic 

organelles that store calcium and other essential ions in 

T. cruzi, making them an attractive target for drug 

development. The use of CRISPR/Cas9 technology has 

provided a more precise and efficient tagging proteins 

in T. cruzi, enabling investigators to evaluate the 

localization and function of proteins with greater 

accuracy. This technique has opened up new avenues for 

research on T. cruzi biology and potential therapies for 

Chagas disease[228]. CRISPR protein tagging has been 

used to investigate the role of DNA polymerases in 

Trypanosoma brucei, the parasite responsible for 

African sleeping sickness. By labeling these enzymes 

with fluorescent tags, scientists could track their 

movement and activity during different stages of the cell 

cycle, which provides valuable insights into the 

regulation of DNA replication in these parasites and 

leads to the discovery of potential targets for drug 

development. Similarly, CRISPR protein tagging has 

been employed to study RNA polymerases in P. 

falciparum. By understanding how these enzymes 

function within the context of parasite biology, we can 

develop new strategies to disrupt their activity and 

combat parasitic diseases. However, there are also some 

challenges associated with CRISPR protein tagging in 

parasitic organisms. One of the main challenges is the 

delivery of the CRISPR system into these organisms, 

which can be difficult due to their complex life cycles 

and cellular structures. In addition, off-target effects can 

occur when using this technique, potentially leading to 

unintended changes in gene expression or function. To 

mitigate these issues, researchers are required to 

carefully design and optimize their experiments to 

minimize off-target effects and ensure accurate labeling 

of target proteins. 

 

Future perspective and considerations 

Until date, the CRISPR-Cas technology is the most 

potent gene editing tool and has been applied in various 

fields because of its simplicity and efficient gene-editing 

capability compared to previous gene editing tools. 

Although the CRISPR-Cas system has potential 

advantages in gene manipulation, concerns remain 

regarding off-target effects in which editing events 

happen at the untargeted regions within the genome. 

Therefore, investigations are underway to improve 

CRISPR-Cas activity and reduce off-target effects by 

optimizing the design of gRNA and applying different 

types of Cas or Cas9 variants. Despite the fact that off-

target mutations on the genome could have unexpected 

effects on the parasite phenotype, this might not be a 

significant issue since apicomplexans have small 

genomes with less potential for off-target mutation. No 

off-target mutations introduced by Cas9 was reported in 

both P. falciparum and P. yoelii[207], indicating that this 

system is extremely specific in these parasites that lack 

NHEJ. However, it is advised to be further investigated 

in other apicomplexan parasites, such as T. gondii, 

which has a functioning NHEJ system and may also 

repair DSBs in off-target locations. Another issue 

related to the CRISPR-Cas system is immunogenicity, 

in which the immune system of the host cell will respond 

to Cas protein. A study recently underlined the question 

of whether immunological responses to Cas9 negatively 

impact its clinical use[229]. Anti-Cas9 responses have 

been detected in healthy human adults. The presence of 

anti-Cas9 antibodies does not necessarily indicate an 

immune response against Cas9-mediated gene editing; 

however, anti-Cas9 T cells are detected in the blood of 

test subjects. These T cells can react to Cas9 in 

circulation, as they are effectively presented Cas9 

through major histocompatibility complex molecules. 

The CRISPR-Cas9 system may become ineffective if 

the immune system destroys the corrected cells. To 

minimize the risk of developing anti-Cas9 CTLs in 

CRISPR-Cas9 gene editing, known strategies should be 

employed. The potential of gene editing is promising, 

but we must be cautious in our approach. Gene therapy 

offers valuable insights, as it has found ways to 

overcome anti-capsid and anti-transgene CTL 

responses. This goal was achieved by carefully 

considering factors such as the vector, dose, target 

tissue, administration route, promoter, and immune 

suppression. By taking these factors into account, the 

gene-editing field can proceed with more confidence 

and ensure that it is being conducted safely and 

effectively. CRISPR-Cas9 platforms, leading to short-
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term expression of Cas9 should be developed for 

CRISPR-Cas9 platforms. Gene therapy has shown 

potential difficulties due to immune responses. Studies 

involving AAV-CRISPR-Cas9, which silences T cells, 

impairs product-specific CD8+ T cells and uses immune 

evasion by muscle-specific gene expression by muscle-

specific gene expression, demonstrate potential 

difficulties. Results suggest that immune response may 

impact the efficacy of gene therapy and lead to the 

development of antibodies that can interfere with the 

treatment. Moreover, CRISPR-Cas9 can induce a p53-

mediated DNA damage response, affecting the safety of 

gene therapy[190]. It is important to evaluate immune 

responses in gene editing in order to determine the most 

appropriate treatment approach and minimize the 

potential risks. There are several ways to address the 

issue of immune recognition. Some possible strategies 

consist of modifying the structure of Cas9 proteins to 

hide immunogenic epitopes, utilizing Cas9 orthologs 

from nonpathogenic bacteria, inducing immune 

tolerance or immune suppression, or focusing on 

immune-privileged organs, such as the eye. 

Additionally, altering antigen presentation of Cas9 

epitopes is a promising approach derived from Epstein-

Barr Virus, which interferes with proteasomal 

degradation and the subsequent antigen 

presentation[230]. While there is evidence suggesting that 

CRISPR-Cas systems can be immunogenic, further 

research is necessary to fully comprehend the potential 

risks and develop effective mitigation strategies. As the 

use of the CRISPR system continues to expand in 

various fields, it is crucial to consider ethical issues tha 

may arise carefully. Multiple improvements are 

necessary to address all current challenges related to the 

application of CRISPR in order to maximize on-target 

efficiency and minimize untargeted editing.  

In conclusion, the application of CRISPR technology 

in manipulating Leishmania and T. gondii genomes 

offers a promising approach to develop new treatments 

for these diseases. The use of CRISPR has enabled 

researchers to identify essential genes that are required 

for survival of the parasite, which can be targeted for 

drug development. Moreover, CRISPR can be used to 

study the biology of the parasite and provides insights 

into the mechanisms of pathogenesis and drug 

resistance. The potential of CRISPR in the field of 

parasitology is vast, and it is exciting to see how this 

technology will continue to revolutionize the field of 

genetic engineering in the future. 
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